Type: \(\displaystyle 0\) (Dynkin type computed to be: \(\displaystyle 0\))
Simple basis: 0 vectors:
Simple basis epsilon form:
Simple basis epsilon form with respect to k:
Number of outer autos with trivial action on orthogonal complement and extending to autos of ambient algebra: 0
Number of outer autos with trivial action on orthogonal complement: 0.
C(k_{ss})_{ss}: C^{1}_8
simple basis centralizer: 8 vectors: (1, 0, 0, 0, 0, 0, 0, 0), (0, 0, 0, 1, 0, 0, 0, 0), (0, 1, 0, 0, 0, 0, 0, 0), (0, 0, 0, 0, 0, 1, 0, 0), (0, 0, 1, 0, 0, 0, 0, 0), (0, 0, 0, 0, 0, 0, 1, 0), (0, 0, 0, 0, 1, 0, 0, 0), (0, 0, 0, 0, 0, 0, 0, 1)
Number of k-submodules of g: 136
Module decomposition, fundamental coords over k: \(\displaystyle 136V_{0}\)
g/k k-submodules
idsizeb\cap k-lowest weightb\cap k-highest weightModule basisWeights epsilon coords
Module 11(-2, -2, -2, -2, -2, -2, -2, -1)(-2, -2, -2, -2, -2, -2, -2, -1)g_{-64}-2\varepsilon_{1}
Module 21(-1, -2, -2, -2, -2, -2, -2, -1)(-1, -2, -2, -2, -2, -2, -2, -1)g_{-63}-\varepsilon_{1}-\varepsilon_{2}
Module 31(0, -2, -2, -2, -2, -2, -2, -1)(0, -2, -2, -2, -2, -2, -2, -1)g_{-62}-2\varepsilon_{2}
Module 41(-1, -1, -2, -2, -2, -2, -2, -1)(-1, -1, -2, -2, -2, -2, -2, -1)g_{-61}-\varepsilon_{1}-\varepsilon_{3}
Module 51(0, -1, -2, -2, -2, -2, -2, -1)(0, -1, -2, -2, -2, -2, -2, -1)g_{-60}-\varepsilon_{2}-\varepsilon_{3}
Module 61(-1, -1, -1, -2, -2, -2, -2, -1)(-1, -1, -1, -2, -2, -2, -2, -1)g_{-59}-\varepsilon_{1}-\varepsilon_{4}
Module 71(0, 0, -2, -2, -2, -2, -2, -1)(0, 0, -2, -2, -2, -2, -2, -1)g_{-58}-2\varepsilon_{3}
Module 81(0, -1, -1, -2, -2, -2, -2, -1)(0, -1, -1, -2, -2, -2, -2, -1)g_{-57}-\varepsilon_{2}-\varepsilon_{4}
Module 91(-1, -1, -1, -1, -2, -2, -2, -1)(-1, -1, -1, -1, -2, -2, -2, -1)g_{-56}-\varepsilon_{1}-\varepsilon_{5}
Module 101(0, 0, -1, -2, -2, -2, -2, -1)(0, 0, -1, -2, -2, -2, -2, -1)g_{-55}-\varepsilon_{3}-\varepsilon_{4}
Module 111(0, -1, -1, -1, -2, -2, -2, -1)(0, -1, -1, -1, -2, -2, -2, -1)g_{-54}-\varepsilon_{2}-\varepsilon_{5}
Module 121(-1, -1, -1, -1, -1, -2, -2, -1)(-1, -1, -1, -1, -1, -2, -2, -1)g_{-53}-\varepsilon_{1}-\varepsilon_{6}
Module 131(0, 0, 0, -2, -2, -2, -2, -1)(0, 0, 0, -2, -2, -2, -2, -1)g_{-52}-2\varepsilon_{4}
Module 141(0, 0, -1, -1, -2, -2, -2, -1)(0, 0, -1, -1, -2, -2, -2, -1)g_{-51}-\varepsilon_{3}-\varepsilon_{5}
Module 151(0, -1, -1, -1, -1, -2, -2, -1)(0, -1, -1, -1, -1, -2, -2, -1)g_{-50}-\varepsilon_{2}-\varepsilon_{6}
Module 161(-1, -1, -1, -1, -1, -1, -2, -1)(-1, -1, -1, -1, -1, -1, -2, -1)g_{-49}-\varepsilon_{1}-\varepsilon_{7}
Module 171(0, 0, 0, -1, -2, -2, -2, -1)(0, 0, 0, -1, -2, -2, -2, -1)g_{-48}-\varepsilon_{4}-\varepsilon_{5}
Module 181(0, 0, -1, -1, -1, -2, -2, -1)(0, 0, -1, -1, -1, -2, -2, -1)g_{-47}-\varepsilon_{3}-\varepsilon_{6}
Module 191(0, -1, -1, -1, -1, -1, -2, -1)(0, -1, -1, -1, -1, -1, -2, -1)g_{-46}-\varepsilon_{2}-\varepsilon_{7}
Module 201(-1, -1, -1, -1, -1, -1, -1, -1)(-1, -1, -1, -1, -1, -1, -1, -1)g_{-45}-\varepsilon_{1}-\varepsilon_{8}
Module 211(0, 0, 0, 0, -2, -2, -2, -1)(0, 0, 0, 0, -2, -2, -2, -1)g_{-44}-2\varepsilon_{5}
Module 221(0, 0, 0, -1, -1, -2, -2, -1)(0, 0, 0, -1, -1, -2, -2, -1)g_{-43}-\varepsilon_{4}-\varepsilon_{6}
Module 231(0, 0, -1, -1, -1, -1, -2, -1)(0, 0, -1, -1, -1, -1, -2, -1)g_{-42}-\varepsilon_{3}-\varepsilon_{7}
Module 241(0, -1, -1, -1, -1, -1, -1, -1)(0, -1, -1, -1, -1, -1, -1, -1)g_{-41}-\varepsilon_{2}-\varepsilon_{8}
Module 251(-1, -1, -1, -1, -1, -1, -1, 0)(-1, -1, -1, -1, -1, -1, -1, 0)g_{-40}-\varepsilon_{1}+\varepsilon_{8}
Module 261(0, 0, 0, 0, -1, -2, -2, -1)(0, 0, 0, 0, -1, -2, -2, -1)g_{-39}-\varepsilon_{5}-\varepsilon_{6}
Module 271(0, 0, 0, -1, -1, -1, -2, -1)(0, 0, 0, -1, -1, -1, -2, -1)g_{-38}-\varepsilon_{4}-\varepsilon_{7}
Module 281(0, 0, -1, -1, -1, -1, -1, -1)(0, 0, -1, -1, -1, -1, -1, -1)g_{-37}-\varepsilon_{3}-\varepsilon_{8}
Module 291(0, -1, -1, -1, -1, -1, -1, 0)(0, -1, -1, -1, -1, -1, -1, 0)g_{-36}-\varepsilon_{2}+\varepsilon_{8}
Module 301(-1, -1, -1, -1, -1, -1, 0, 0)(-1, -1, -1, -1, -1, -1, 0, 0)g_{-35}-\varepsilon_{1}+\varepsilon_{7}
Module 311(0, 0, 0, 0, 0, -2, -2, -1)(0, 0, 0, 0, 0, -2, -2, -1)g_{-34}-2\varepsilon_{6}
Module 321(0, 0, 0, 0, -1, -1, -2, -1)(0, 0, 0, 0, -1, -1, -2, -1)g_{-33}-\varepsilon_{5}-\varepsilon_{7}
Module 331(0, 0, 0, -1, -1, -1, -1, -1)(0, 0, 0, -1, -1, -1, -1, -1)g_{-32}-\varepsilon_{4}-\varepsilon_{8}
Module 341(0, 0, -1, -1, -1, -1, -1, 0)(0, 0, -1, -1, -1, -1, -1, 0)g_{-31}-\varepsilon_{3}+\varepsilon_{8}
Module 351(0, -1, -1, -1, -1, -1, 0, 0)(0, -1, -1, -1, -1, -1, 0, 0)g_{-30}-\varepsilon_{2}+\varepsilon_{7}
Module 361(-1, -1, -1, -1, -1, 0, 0, 0)(-1, -1, -1, -1, -1, 0, 0, 0)g_{-29}-\varepsilon_{1}+\varepsilon_{6}
Module 371(0, 0, 0, 0, 0, -1, -2, -1)(0, 0, 0, 0, 0, -1, -2, -1)g_{-28}-\varepsilon_{6}-\varepsilon_{7}
Module 381(0, 0, 0, 0, -1, -1, -1, -1)(0, 0, 0, 0, -1, -1, -1, -1)g_{-27}-\varepsilon_{5}-\varepsilon_{8}
Module 391(0, 0, 0, -1, -1, -1, -1, 0)(0, 0, 0, -1, -1, -1, -1, 0)g_{-26}-\varepsilon_{4}+\varepsilon_{8}
Module 401(0, 0, -1, -1, -1, -1, 0, 0)(0, 0, -1, -1, -1, -1, 0, 0)g_{-25}-\varepsilon_{3}+\varepsilon_{7}
Module 411(0, -1, -1, -1, -1, 0, 0, 0)(0, -1, -1, -1, -1, 0, 0, 0)g_{-24}-\varepsilon_{2}+\varepsilon_{6}
Module 421(-1, -1, -1, -1, 0, 0, 0, 0)(-1, -1, -1, -1, 0, 0, 0, 0)g_{-23}-\varepsilon_{1}+\varepsilon_{5}
Module 431(0, 0, 0, 0, 0, 0, -2, -1)(0, 0, 0, 0, 0, 0, -2, -1)g_{-22}-2\varepsilon_{7}
Module 441(0, 0, 0, 0, 0, -1, -1, -1)(0, 0, 0, 0, 0, -1, -1, -1)g_{-21}-\varepsilon_{6}-\varepsilon_{8}
Module 451(0, 0, 0, 0, -1, -1, -1, 0)(0, 0, 0, 0, -1, -1, -1, 0)g_{-20}-\varepsilon_{5}+\varepsilon_{8}
Module 461(0, 0, 0, -1, -1, -1, 0, 0)(0, 0, 0, -1, -1, -1, 0, 0)g_{-19}-\varepsilon_{4}+\varepsilon_{7}
Module 471(0, 0, -1, -1, -1, 0, 0, 0)(0, 0, -1, -1, -1, 0, 0, 0)g_{-18}-\varepsilon_{3}+\varepsilon_{6}
Module 481(0, -1, -1, -1, 0, 0, 0, 0)(0, -1, -1, -1, 0, 0, 0, 0)g_{-17}-\varepsilon_{2}+\varepsilon_{5}
Module 491(-1, -1, -1, 0, 0, 0, 0, 0)(-1, -1, -1, 0, 0, 0, 0, 0)g_{-16}-\varepsilon_{1}+\varepsilon_{4}
Module 501(0, 0, 0, 0, 0, 0, -1, -1)(0, 0, 0, 0, 0, 0, -1, -1)g_{-15}-\varepsilon_{7}-\varepsilon_{8}
Module 511(0, 0, 0, 0, 0, -1, -1, 0)(0, 0, 0, 0, 0, -1, -1, 0)g_{-14}-\varepsilon_{6}+\varepsilon_{8}
Module 521(0, 0, 0, 0, -1, -1, 0, 0)(0, 0, 0, 0, -1, -1, 0, 0)g_{-13}-\varepsilon_{5}+\varepsilon_{7}
Module 531(0, 0, 0, -1, -1, 0, 0, 0)(0, 0, 0, -1, -1, 0, 0, 0)g_{-12}-\varepsilon_{4}+\varepsilon_{6}
Module 541(0, 0, -1, -1, 0, 0, 0, 0)(0, 0, -1, -1, 0, 0, 0, 0)g_{-11}-\varepsilon_{3}+\varepsilon_{5}
Module 551(0, -1, -1, 0, 0, 0, 0, 0)(0, -1, -1, 0, 0, 0, 0, 0)g_{-10}-\varepsilon_{2}+\varepsilon_{4}
Module 561(-1, -1, 0, 0, 0, 0, 0, 0)(-1, -1, 0, 0, 0, 0, 0, 0)g_{-9}-\varepsilon_{1}+\varepsilon_{3}
Module 571(0, 0, 0, 0, 0, 0, 0, -1)(0, 0, 0, 0, 0, 0, 0, -1)g_{-8}-2\varepsilon_{8}
Module 581(0, 0, 0, 0, 0, 0, -1, 0)(0, 0, 0, 0, 0, 0, -1, 0)g_{-7}-\varepsilon_{7}+\varepsilon_{8}
Module 591(0, 0, 0, 0, 0, -1, 0, 0)(0, 0, 0, 0, 0, -1, 0, 0)g_{-6}-\varepsilon_{6}+\varepsilon_{7}
Module 601(0, 0, 0, 0, -1, 0, 0, 0)(0, 0, 0, 0, -1, 0, 0, 0)g_{-5}-\varepsilon_{5}+\varepsilon_{6}
Module 611(0, 0, 0, -1, 0, 0, 0, 0)(0, 0, 0, -1, 0, 0, 0, 0)g_{-4}-\varepsilon_{4}+\varepsilon_{5}
Module 621(0, 0, -1, 0, 0, 0, 0, 0)(0, 0, -1, 0, 0, 0, 0, 0)g_{-3}-\varepsilon_{3}+\varepsilon_{4}
Module 631(0, -1, 0, 0, 0, 0, 0, 0)(0, -1, 0, 0, 0, 0, 0, 0)g_{-2}-\varepsilon_{2}+\varepsilon_{3}
Module 641(-1, 0, 0, 0, 0, 0, 0, 0)(-1, 0, 0, 0, 0, 0, 0, 0)g_{-1}-\varepsilon_{1}+\varepsilon_{2}
Module 651(1, 0, 0, 0, 0, 0, 0, 0)(1, 0, 0, 0, 0, 0, 0, 0)g_{1}\varepsilon_{1}-\varepsilon_{2}
Module 661(0, 1, 0, 0, 0, 0, 0, 0)(0, 1, 0, 0, 0, 0, 0, 0)g_{2}\varepsilon_{2}-\varepsilon_{3}
Module 671(0, 0, 1, 0, 0, 0, 0, 0)(0, 0, 1, 0, 0, 0, 0, 0)g_{3}\varepsilon_{3}-\varepsilon_{4}
Module 681(0, 0, 0, 1, 0, 0, 0, 0)(0, 0, 0, 1, 0, 0, 0, 0)g_{4}\varepsilon_{4}-\varepsilon_{5}
Module 691(0, 0, 0, 0, 1, 0, 0, 0)(0, 0, 0, 0, 1, 0, 0, 0)g_{5}\varepsilon_{5}-\varepsilon_{6}
Module 701(0, 0, 0, 0, 0, 1, 0, 0)(0, 0, 0, 0, 0, 1, 0, 0)g_{6}\varepsilon_{6}-\varepsilon_{7}
Module 711(0, 0, 0, 0, 0, 0, 1, 0)(0, 0, 0, 0, 0, 0, 1, 0)g_{7}\varepsilon_{7}-\varepsilon_{8}
Module 721(0, 0, 0, 0, 0, 0, 0, 1)(0, 0, 0, 0, 0, 0, 0, 1)g_{8}2\varepsilon_{8}
Module 731(1, 1, 0, 0, 0, 0, 0, 0)(1, 1, 0, 0, 0, 0, 0, 0)g_{9}\varepsilon_{1}-\varepsilon_{3}
Module 741(0, 1, 1, 0, 0, 0, 0, 0)(0, 1, 1, 0, 0, 0, 0, 0)g_{10}\varepsilon_{2}-\varepsilon_{4}
Module 751(0, 0, 1, 1, 0, 0, 0, 0)(0, 0, 1, 1, 0, 0, 0, 0)g_{11}\varepsilon_{3}-\varepsilon_{5}
Module 761(0, 0, 0, 1, 1, 0, 0, 0)(0, 0, 0, 1, 1, 0, 0, 0)g_{12}\varepsilon_{4}-\varepsilon_{6}
Module 771(0, 0, 0, 0, 1, 1, 0, 0)(0, 0, 0, 0, 1, 1, 0, 0)g_{13}\varepsilon_{5}-\varepsilon_{7}
Module 781(0, 0, 0, 0, 0, 1, 1, 0)(0, 0, 0, 0, 0, 1, 1, 0)g_{14}\varepsilon_{6}-\varepsilon_{8}
Module 791(0, 0, 0, 0, 0, 0, 1, 1)(0, 0, 0, 0, 0, 0, 1, 1)g_{15}\varepsilon_{7}+\varepsilon_{8}
Module 801(1, 1, 1, 0, 0, 0, 0, 0)(1, 1, 1, 0, 0, 0, 0, 0)g_{16}\varepsilon_{1}-\varepsilon_{4}
Module 811(0, 1, 1, 1, 0, 0, 0, 0)(0, 1, 1, 1, 0, 0, 0, 0)g_{17}\varepsilon_{2}-\varepsilon_{5}
Module 821(0, 0, 1, 1, 1, 0, 0, 0)(0, 0, 1, 1, 1, 0, 0, 0)g_{18}\varepsilon_{3}-\varepsilon_{6}
Module 831(0, 0, 0, 1, 1, 1, 0, 0)(0, 0, 0, 1, 1, 1, 0, 0)g_{19}\varepsilon_{4}-\varepsilon_{7}
Module 841(0, 0, 0, 0, 1, 1, 1, 0)(0, 0, 0, 0, 1, 1, 1, 0)g_{20}\varepsilon_{5}-\varepsilon_{8}
Module 851(0, 0, 0, 0, 0, 1, 1, 1)(0, 0, 0, 0, 0, 1, 1, 1)g_{21}\varepsilon_{6}+\varepsilon_{8}
Module 861(0, 0, 0, 0, 0, 0, 2, 1)(0, 0, 0, 0, 0, 0, 2, 1)g_{22}2\varepsilon_{7}
Module 871(1, 1, 1, 1, 0, 0, 0, 0)(1, 1, 1, 1, 0, 0, 0, 0)g_{23}\varepsilon_{1}-\varepsilon_{5}
Module 881(0, 1, 1, 1, 1, 0, 0, 0)(0, 1, 1, 1, 1, 0, 0, 0)g_{24}\varepsilon_{2}-\varepsilon_{6}
Module 891(0, 0, 1, 1, 1, 1, 0, 0)(0, 0, 1, 1, 1, 1, 0, 0)g_{25}\varepsilon_{3}-\varepsilon_{7}
Module 901(0, 0, 0, 1, 1, 1, 1, 0)(0, 0, 0, 1, 1, 1, 1, 0)g_{26}\varepsilon_{4}-\varepsilon_{8}
Module 911(0, 0, 0, 0, 1, 1, 1, 1)(0, 0, 0, 0, 1, 1, 1, 1)g_{27}\varepsilon_{5}+\varepsilon_{8}
Module 921(0, 0, 0, 0, 0, 1, 2, 1)(0, 0, 0, 0, 0, 1, 2, 1)g_{28}\varepsilon_{6}+\varepsilon_{7}
Module 931(1, 1, 1, 1, 1, 0, 0, 0)(1, 1, 1, 1, 1, 0, 0, 0)g_{29}\varepsilon_{1}-\varepsilon_{6}
Module 941(0, 1, 1, 1, 1, 1, 0, 0)(0, 1, 1, 1, 1, 1, 0, 0)g_{30}\varepsilon_{2}-\varepsilon_{7}
Module 951(0, 0, 1, 1, 1, 1, 1, 0)(0, 0, 1, 1, 1, 1, 1, 0)g_{31}\varepsilon_{3}-\varepsilon_{8}
Module 961(0, 0, 0, 1, 1, 1, 1, 1)(0, 0, 0, 1, 1, 1, 1, 1)g_{32}\varepsilon_{4}+\varepsilon_{8}
Module 971(0, 0, 0, 0, 1, 1, 2, 1)(0, 0, 0, 0, 1, 1, 2, 1)g_{33}\varepsilon_{5}+\varepsilon_{7}
Module 981(0, 0, 0, 0, 0, 2, 2, 1)(0, 0, 0, 0, 0, 2, 2, 1)g_{34}2\varepsilon_{6}
Module 991(1, 1, 1, 1, 1, 1, 0, 0)(1, 1, 1, 1, 1, 1, 0, 0)g_{35}\varepsilon_{1}-\varepsilon_{7}
Module 1001(0, 1, 1, 1, 1, 1, 1, 0)(0, 1, 1, 1, 1, 1, 1, 0)g_{36}\varepsilon_{2}-\varepsilon_{8}
Module 1011(0, 0, 1, 1, 1, 1, 1, 1)(0, 0, 1, 1, 1, 1, 1, 1)g_{37}\varepsilon_{3}+\varepsilon_{8}
Module 1021(0, 0, 0, 1, 1, 1, 2, 1)(0, 0, 0, 1, 1, 1, 2, 1)g_{38}\varepsilon_{4}+\varepsilon_{7}
Module 1031(0, 0, 0, 0, 1, 2, 2, 1)(0, 0, 0, 0, 1, 2, 2, 1)g_{39}\varepsilon_{5}+\varepsilon_{6}
Module 1041(1, 1, 1, 1, 1, 1, 1, 0)(1, 1, 1, 1, 1, 1, 1, 0)g_{40}\varepsilon_{1}-\varepsilon_{8}
Module 1051(0, 1, 1, 1, 1, 1, 1, 1)(0, 1, 1, 1, 1, 1, 1, 1)g_{41}\varepsilon_{2}+\varepsilon_{8}
Module 1061(0, 0, 1, 1, 1, 1, 2, 1)(0, 0, 1, 1, 1, 1, 2, 1)g_{42}\varepsilon_{3}+\varepsilon_{7}
Module 1071(0, 0, 0, 1, 1, 2, 2, 1)(0, 0, 0, 1, 1, 2, 2, 1)g_{43}\varepsilon_{4}+\varepsilon_{6}
Module 1081(0, 0, 0, 0, 2, 2, 2, 1)(0, 0, 0, 0, 2, 2, 2, 1)g_{44}2\varepsilon_{5}
Module 1091(1, 1, 1, 1, 1, 1, 1, 1)(1, 1, 1, 1, 1, 1, 1, 1)g_{45}\varepsilon_{1}+\varepsilon_{8}
Module 1101(0, 1, 1, 1, 1, 1, 2, 1)(0, 1, 1, 1, 1, 1, 2, 1)g_{46}\varepsilon_{2}+\varepsilon_{7}
Module 1111(0, 0, 1, 1, 1, 2, 2, 1)(0, 0, 1, 1, 1, 2, 2, 1)g_{47}\varepsilon_{3}+\varepsilon_{6}
Module 1121(0, 0, 0, 1, 2, 2, 2, 1)(0, 0, 0, 1, 2, 2, 2, 1)g_{48}\varepsilon_{4}+\varepsilon_{5}
Module 1131(1, 1, 1, 1, 1, 1, 2, 1)(1, 1, 1, 1, 1, 1, 2, 1)g_{49}\varepsilon_{1}+\varepsilon_{7}
Module 1141(0, 1, 1, 1, 1, 2, 2, 1)(0, 1, 1, 1, 1, 2, 2, 1)g_{50}\varepsilon_{2}+\varepsilon_{6}
Module 1151(0, 0, 1, 1, 2, 2, 2, 1)(0, 0, 1, 1, 2, 2, 2, 1)g_{51}\varepsilon_{3}+\varepsilon_{5}
Module 1161(0, 0, 0, 2, 2, 2, 2, 1)(0, 0, 0, 2, 2, 2, 2, 1)g_{52}2\varepsilon_{4}
Module 1171(1, 1, 1, 1, 1, 2, 2, 1)(1, 1, 1, 1, 1, 2, 2, 1)g_{53}\varepsilon_{1}+\varepsilon_{6}
Module 1181(0, 1, 1, 1, 2, 2, 2, 1)(0, 1, 1, 1, 2, 2, 2, 1)g_{54}\varepsilon_{2}+\varepsilon_{5}
Module 1191(0, 0, 1, 2, 2, 2, 2, 1)(0, 0, 1, 2, 2, 2, 2, 1)g_{55}\varepsilon_{3}+\varepsilon_{4}
Module 1201(1, 1, 1, 1, 2, 2, 2, 1)(1, 1, 1, 1, 2, 2, 2, 1)g_{56}\varepsilon_{1}+\varepsilon_{5}
Module 1211(0, 1, 1, 2, 2, 2, 2, 1)(0, 1, 1, 2, 2, 2, 2, 1)g_{57}\varepsilon_{2}+\varepsilon_{4}
Module 1221(0, 0, 2, 2, 2, 2, 2, 1)(0, 0, 2, 2, 2, 2, 2, 1)g_{58}2\varepsilon_{3}
Module 1231(1, 1, 1, 2, 2, 2, 2, 1)(1, 1, 1, 2, 2, 2, 2, 1)g_{59}\varepsilon_{1}+\varepsilon_{4}
Module 1241(0, 1, 2, 2, 2, 2, 2, 1)(0, 1, 2, 2, 2, 2, 2, 1)g_{60}\varepsilon_{2}+\varepsilon_{3}
Module 1251(1, 1, 2, 2, 2, 2, 2, 1)(1, 1, 2, 2, 2, 2, 2, 1)g_{61}\varepsilon_{1}+\varepsilon_{3}
Module 1261(0, 2, 2, 2, 2, 2, 2, 1)(0, 2, 2, 2, 2, 2, 2, 1)g_{62}2\varepsilon_{2}
Module 1271(1, 2, 2, 2, 2, 2, 2, 1)(1, 2, 2, 2, 2, 2, 2, 1)g_{63}\varepsilon_{1}+\varepsilon_{2}
Module 1281(2, 2, 2, 2, 2, 2, 2, 1)(2, 2, 2, 2, 2, 2, 2, 1)g_{64}2\varepsilon_{1}
Module 1291(0, 0, 0, 0, 0, 0, 0, 0)(0, 0, 0, 0, 0, 0, 0, 0)h_{1}0
Module 1301(0, 0, 0, 0, 0, 0, 0, 0)(0, 0, 0, 0, 0, 0, 0, 0)h_{2}0
Module 1311(0, 0, 0, 0, 0, 0, 0, 0)(0, 0, 0, 0, 0, 0, 0, 0)h_{3}0
Module 1321(0, 0, 0, 0, 0, 0, 0, 0)(0, 0, 0, 0, 0, 0, 0, 0)h_{4}0
Module 1331(0, 0, 0, 0, 0, 0, 0, 0)(0, 0, 0, 0, 0, 0, 0, 0)h_{5}0
Module 1341(0, 0, 0, 0, 0, 0, 0, 0)(0, 0, 0, 0, 0, 0, 0, 0)h_{6}0
Module 1351(0, 0, 0, 0, 0, 0, 0, 0)(0, 0, 0, 0, 0, 0, 0, 0)h_{7}0
Module 1361(0, 0, 0, 0, 0, 0, 0, 0)(0, 0, 0, 0, 0, 0, 0, 0)h_{8}0

Information about the subalgebra generation algorithm.
Heirs rejected due to having symmetric Cartan type outside of list dictated by parabolic heirs: 0
Heirs rejected due to not being maximally dominant: 126
Heirs rejected due to not being maximal with respect to small Dynkin diagram automorphism that extends to ambient automorphism: 126
Heirs rejected due to having ambient Lie algebra decomposition iso to an already found subalgebra: 0
This subalgebra is not parabolically induced by anyone
Potential Dynkin type extensions: A^{2}_1, A^{1}_1,